GCE

Mathematics

Advanced GCE

Unit 4727: Further Pure Mathematics 3

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Question		Answer	Marks	Guidance	
1	(i)	vectors in plane: two of $\left(\begin{array}{c}-4 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 6 \\ 4\end{array}\right)=2\left(\begin{array}{l}0 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right)$ $\mathbf{r}=\left(\begin{array}{l} 1 \\ 6 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{l} 0 \\ 3 \\ 2 \end{array}\right)+\mu\left(\begin{array}{l} 4 \\ 2 \\ 3 \end{array}\right)$	M1 A1 [2]	Differences between two pairs Aef of parametric equation	Any multiple Must have "r = ..."
1	(ii)	Alternate method	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { M1A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { M1 A1 } \end{gathered}$	Calculate vector product or multiple Aef of cartesian equation, isw. EITHER x, y, z in parametric form both parameters in terms of e.g. x, y substitute into parametric form of z OR x, y, z in parametric form 2 equations in x, y, z and one parameter eliminate parameter	M1 can be awarded where vector product has method shown or only one term wrong Or Cartesian form $=d$ with attempt to compute d

Question		Answer	Marks	Guidance	
2	(i)	1 3 5 7 1 1 3 5 7 3 3 1 7 5 5 5 7 1 3 7 7 5 3 1 From table clearly closed 1 is identity $3^{-1} \equiv 3,5^{-1} \equiv 5,7^{-1} \equiv 7(\bmod 8)$	B2 B1 B1 B1 [5]	-1 each error Superfluous fact/s gets -1	Must be clear they are referring to tabulated results Or "1 appears in every row"
2	(ii)	1 has order 1 and 3, 5, 7 all have order 2	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		
2	(iii)	\{1, 3\}, \{1, 5\}, \{1, 7\} (and \{1\})	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	All correct, no extras	Allow $\{1\}$ included or omitted
2	(iv)	in $H^{2} \equiv 9(\bmod 10)$ so 3 not order 2 no element of order >2 in G so not isomorphic	M1 A1 [2]	Shows and states that 3 or that 7 is not order 2 (or is order 4) Completely correct reasoning Or, if zero, then SC1 for merely stating comparable orders and then saying that "orders don't correspond, so not isomorphic" Or table for H with saying "not all elements self inverse, so not isomorphic"	

Question		Answer	Marks	Guidance	
4	(i)	Sketch $O A=\|3\|=3, O B=\left\|3 \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}\right\|=3$ and $\angle B O A=\frac{1}{3} \pi$ hence $\triangle O A B$ equilateral	B1 M1 A1 [3]	Can be seen on diagram	Must have axes, A shown 3 across and either scale (or co-ordinates) with B in rough position, or angle and distance on argand diagram. No inconsistencies Alt. Attempts AB or second angle
4	(ii)	$3 \mathrm{e}^{-\frac{1}{3} \pi \mathrm{i}}$	M1A1 [2]	Or $3 \mathrm{e}^{\frac{5}{3} \pi \mathrm{i}}$. Isw M1 for evidence they are considering BA, or for $\frac{3}{2}-\frac{3}{2} \sqrt{3} \mathrm{i}$	For full marks can use CiS form, or clear polar co-ordinates, in radians. Not C-iS
4	(iii)	$\begin{aligned} & \left(3-3 \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}\right)^{5}=3^{5} \mathrm{e}^{-\frac{5}{3} \pi \mathrm{i}} \\ & =243\left(\cos \frac{5}{3} \pi-\mathrm{i} \sin \frac{5}{3} \pi\right) \\ & =\frac{243}{2}+\frac{243}{2} \sqrt{3} \mathrm{i} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \text { B1 } \\ \text { [3] } \end{gathered}$	For $\bmod ^{5}$ and $\arg \times 5$ aef	"Hence" so must use 'their $3 \mathrm{e}^{-\frac{1}{3} \pi \mathrm{i}}$, Condone use of "121.5".

Question		Answer	Marks	Guidance	
6	(ii)	$\begin{aligned} & \cos \left(\frac{1}{2} \pi-\theta\right)=\frac{\left\|\left(\begin{array}{l} 2 \\ 5 \\ 1 \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ 2 \\ -2 \end{array}\right)\right\|}{\left.\left\|\left(\begin{array}{l} 2 \\ 5 \\ 1 \end{array}\right)\right\|\left(\begin{array}{c} 1 \\ 2 \\ -2 \end{array}\right) \right\rvert\,}=\frac{10}{3 \sqrt{30}} \\ & \theta=0.654 \end{aligned}$	M1A1 A1 [3]	or 37.5°	Attempt to find angle or its complement
6	(iii)	If P is point of intersection and Q is required point, $\begin{aligned} & \overrightarrow{P Q}=\lambda\left(\begin{array}{l} 2 \\ 5 \\ 1 \end{array}\right) \text { so } \sin \theta=\frac{2}{P Q}=\frac{2}{\|\lambda\| \sqrt{30}} \\ & \frac{10}{3 \sqrt{30}}=\frac{2}{\|\lambda\| \sqrt{30}} \\ & \lambda= \pm \frac{3}{5} \end{aligned}$ points have position vectors $\left(\begin{array}{l}3 \\ 4 \\ 3\end{array}\right) \pm \frac{3}{5}\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right)$ points at (1.8, 1, 2.4) and (4.2, 7, 3.6) Alternative: $\begin{aligned} & \text { Distance }=\frac{\|2 t+1+2(5 t-1)-2(t+2)-5\|}{\sqrt{1^{2}+2^{2}+2^{2}}}=2 \\ & \Rightarrow t=0.4 \text { or } 1.6 \\ & (1.8,1,2.4) \text { and }(4.2,7,3.6) \end{aligned}$	$\begin{gathered} \text { M1* } \\ \\ \text { M1 } \\ \text { A1 } \\ \\ \text { *M1 } \\ \\ \text { A1 } \\ \\ \text { M1* } \\ \text { A1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { [5] } \end{gathered}$	or $\overrightarrow{P Q} \cdot \hat{\mathbf{n}}= \pm 2$ where $\mathbf{n}=\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ Dep on $1^{\text {st }} \mathrm{M} 1$ cao Solve At least one value found	Use $\overrightarrow{P Q}$ with right angled triangle or consider component of $\overrightarrow{P Q}$ in direction of normal vector. Valid method to set up equation in λ alone. (May work from general point on original equation) Zero if formula used without substitution in of parametric form.

Question		Answer		Guidance	
7	(i)	$(a b)^{6}=a b a b . . . a b=a^{6} b^{6}$ as commutative $=\left(a^{2}\right)^{3}\left(b^{3}\right)^{2}=e^{3} e^{2}=e$ So $a b$ has order 1, 2, 3, or 6 ($b \neq a \Rightarrow a b \neq a^{2} \Rightarrow a b \neq e$ so $a b$ not order 1) $(a b)^{2}=a^{2} b^{2}=e b^{2}=b^{2}$ and b not order 2, so $a b$ not order 2 $(a b)^{3}=a^{3} b^{3}=a a^{2} e=a e e=a \neq e$, so $a b$ not order 3 (So must be order 6)	M1 A1 M1 A1 [4]	Must give reason Using orders of a and b Consider other cases AG Complete argument	Some demonstration that they understand commutativity Condone absence of this line Insufficient to merely have simplified all $(a b)^{n}$
7	(ii)	$a c$ has order 18 18 is LCM of 2 and 9 , (so we can use a similar argument to part (i)) So as G has an element of order 18 it must be cyclic.	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	or explicit consideration of other cases AG Complete argument	Or $a b c$ or generator
8	(i)	$\begin{aligned} & \cos 5 \theta+\mathrm{i} \sin 5 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{5} \\ & =c^{5}+5 \mathrm{i} c^{4} s-10 c^{3} s^{2}-10 \mathrm{i} c^{2} s^{3}+5 c s^{4}+\mathrm{i} s^{5} \\ & \cos 5 \theta=c^{5}-10 c^{3} s^{2}+5 c s^{4} \\ & =c^{5}-10 c^{3}\left(1-c^{2}\right)+5 c\left(1-c^{2}\right)^{2} \\ & =c^{5}-10 c^{3}+10 c^{5}+5 c-10 c^{3}+5 c^{5} \\ & \cos 5 \theta=16 c^{5}-20 c^{3}+5 c \end{aligned}$	B1 M1 M1 M1 A1 [5]	Or $\cos 5 \theta=r e\left\{(\cos \theta+\mathrm{i} \sin \theta)^{5}\right\}$ Take real parts AG	No more than 1 error, can be unsimplified

Question		Answer Multiplying by x gives $16 x^{5}-20 x^{3}+5 x=0$ letting $x=\cos \alpha$ gives $\cos 5 \alpha=0$ hence $5 \alpha=\frac{1}{2} \pi, \frac{3}{2} \pi, \frac{5}{2} \pi, \frac{7}{2} \pi, \frac{9}{2} \pi$ $\alpha=\frac{1}{10} \pi, \frac{3}{10} \pi, \frac{5}{10} \pi, \frac{7}{10} \pi, \frac{9}{10} \pi$ $\cos \frac{5}{10} \pi=0$ which is not a root so roots $x=\cos \frac{1}{10} \pi, \cos \frac{3}{10} \pi, \cos \frac{7}{10} \pi, \cos \frac{9}{10} \pi$	Marks	Guidance	
8	(ii)		M1 A1 A1 A1 [4]		Hence, so no marks for using quadratic at this stage.
8	(iii)	$16 x^{4}-20 x^{2}+5=0 \Leftrightarrow x^{2}=\frac{20 \pm \sqrt{80}}{32}$ \cos decreases between 0 and π so $\cos \frac{1}{10} \pi$ is greatest root $\text { so } \cos \frac{1}{10} \pi=\sqrt{\frac{20+\sqrt{80}}{32}}=\sqrt{\frac{5+\sqrt{5}}{8}}$	B1 M1 A1 [3]	Dep on full marks in (ii)	Can be gained if seen in (ii)

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

